[image: image1.jpg]

Instructor: Abdulkadir GORUR

Time Allowed: 120 minutes

 Date: 04 / 06 / 2007

Name and Surname
:……………………………………………………………………

Student Number

 :…………………………………

1. Write a function, numberOfPaths(struct node*), that will take the root of the binary tree and will find the total number of root-to-leaf paths and return the value. Write another function, findPathSum(struct node*,int), that will find the sum of each path and will also print out the sums one per line. For example, consider the following binary tree; (Consider that all of the necessary tree functions are defined.) (20P)

[image: image2.png]11

/N

/N
13

4

2.) Write a function, mirror(struct node*), that will take the root of the tree and will construct the mirror of that tree. Tree elements will be integer values For example the following tree; (Consider that all of the necessary tree functions are defined) (15P)

[image: image3.png]/N
/N

 will change into => [image: image4.png]/N
/N

 [image: image5.png]

 The root of the tree is not going to change, so the root does not need to be updated each time. Only the child nodes and leaf nodes will change place. Left nodes will become right nodes and vice versa. The number of nodes is not important, the function should work for every size of tree.

3.) Write a function, alternatingSplit(struct node* source, struct node* aRef, struct bRef node*), that will take an unordered linked list filled with odd and even integer numbers, and will split this list into two lists, one containing all of the odd numbers from the original list and the other containing all of the even numbers from the original list. Both of these lists must be sorted in the end. The size of the list is not important, the function should work for any size. For example; (Consider that all of the necessary linked list functions are defined) (15P)

 (unsorted list) Original List: 13->6->20->7->1->10->5->8->NULL

 (odd numbered list) List 1: 1->5->7->13->NULL

 (even numbered list) List 2: 6->8->10->20->NULL

3.) Write a function NODE *moveToFirst(int key, NODE *L) that searches list L for a node that matches a key value. If key exists in L search causes the node to be moved to the beginning of the list. An unsuccessful search leaves the list unchanged. For example, if L={1,2,3,4}, then moveToFirst(3,L) produces L={3,1,2,4}. (10P)
typedef struct node

{

int x;

struct node *next;

} NODE;

4.) Assume we are dealing with the following array:
[7, 5, 2, 13, 14, 12, 20]
What will the array look like after 2 iteration of the outer loop for each of bubble sort and insertion sort methods? (10p)
4.) Write a recursive DestroyTree(TNode *root) function which will de-allocates all the nodes contained in a tree structure. (10P)
5.) The following are the definitions concerning nodes in a linked list:

typedef struct node

{

int x;

struct node *next;

} NODE;

You want to write a function called sum_nodes which takes, as a parameter, a pointer to a linked list and returns the sum of the values in linked list.

a. Write an iterative (non-recursive) version of sum_nodes. (5P)
b. Write a recursive version of sum_nodes. (15P)
6.) write a recursive function that counts and returns number of nodes that has two subtree in a binary tree.(15P)

6.) Write a method named numElementsInRange that could be put inside the BST, which accepts a maximum value as parameter, and returns the count of how many elements in this BST less than in the maximum. For example, consider a BST named Tree containing the following elements: (25P)

6

10

-7

-4

-8

-6

1

5

Çankaya University

Department of Computer Engineering

CENG 218 Data Structures

Final

12

11

Max: 6

Number of elements in BST is: 6

Max: -4

Number of elements in BST is:3

Sample run; (Your output should look like this)

Path 1: 5 + 4 + 11 + 7 = 27

Path 2: 5 + 4 + 11 + 2 = 22

Path 3: 5 + 8 + 13 = 26

Path 4: 5 + 8 + 4 + 1 = 18

There are 3 nodes that two sub trees

Page 4 of 6

